Fast and Accurate Texture Recognition with Multilayer Convolution and Multifractal Analysis
نویسندگان
چکیده
A fast and accurate texture recognition system is presented. The new approach consists in extracting locally and globally invariant representations. The locally invariant representation is built on a multi-resolution convolutional network with a local pooling operator to improve robustness to local orientation and scale changes. This representation is mapped into a globally invariant descriptor using multifractal analysis. We propose a new multifractal descriptor that captures rich texture information and is mathematically invariant to various complex transformations. In addition, two more techniques are presented to further improve the robustness of our system. The first technique consists in combining the generative PCA classifier with multiclass SVMs. The second technique consists of two simple strategies to boost classification results by synthetically augmenting the training set. Experiments show that the proposed solution outperforms existing methods on three challenging public benchmark datasets, while being computationally efficient.
منابع مشابه
Automatic Detection of Meddies Through Texture Analysis of Sea Surface Temperature Maps
A new machine learning approach is presented for automatic detection of Mediterranean water eddies from sea surface temperature maps of the Atlantic Ocean. A pre-processing step uses Laws’ convolution kernels to reveal microstructural patterns of water temperature. Given a map point, a numerical vector containing information on local structural properties is generated. This vector is forwarded ...
متن کاملManifold Regularized Slow Feature Analysis for Dynamic Texture Recognition
Dynamic textures exist in various forms, e.g., fire, smoke, and traffic jams, but recognizing dynamic texture is challenging due to the complex temporal variations. In this paper, we present a novel approach stemmed from slow feature analysis (SFA) for dynamic texture recognition. SFA extracts slowly varying features from fast varying signals. Fortunately, SFA is capable to leach invariant repr...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملHalf Beam Block Technique in Breast Cancer and It’s Dosimetric Analysis using different Algorithms
Introduction: Single isocentre half-beam block (HBB) technique permits the avoidance of hot and cold spots. This technique is very useful in sparing the underlying ipsilateral lung and heart, if the left breast is treated. The major advantage of this technique is that it facilitates the complete sparing of both contralateral breast and lung. Regarding this, the present study aimed to analyse th...
متن کاملMultifractal Feature Descriptor for Histopathology
BACKGROUND Histologic image analysis plays an important role in cancer diagnosis. It describes the structure of the body tissues and abnormal structure gives the suspicion of the cancer or some other diseases. Observing the structural changes of these chaotic textures from the human eye is challenging process. However, the challenge can be defeat by forming mathematical descriptor to represent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014